La maravilla asombrosa de las Cuevas


Cueva marina
La acción de las olas excavó esta cueva marina en las Rocas Friar, cerca de cabo San Lucas en Baja California (México). La entrada tiene una altura de unos 4 metros. Los depósitos de arena arrastrados hasta la cueva proporcionan un lugar de acogida para los pescadores y los mamíferos marinos.

Cueva, cavidad natural o artificial que se forma bajo la superficie de la tierra o en la ladera de una colina, acantilado o montaña. Las cuevas son de formas y tamaños variados y muchas presentan grandes aberturas hacia la superficie.
2
FORMACIÓN DE LAS CUEVAS
Formación de una cueva de disolución
Las cuevas de disolución (morfología cárstica) se forman cuando el agua de lluvia rezumada y las corrientes superficiales desgastan la roca durante muchos años formando laberintos subterráneos. Al fluir, el agua absorbe dióxido de carbono del suelo que reacciona con el agua y forma ácido carbónico. Aunque es un ácido muy débil, disuelve la caliza que se deposita más tarde en forma de estalactitas y estalagmitas, formaciones características de una cueva de disolución. Una corriente puede excavar varios niveles en una cueva, dejando atrás cámaras secas.

Las cuevas naturales evolucionan de varias formas, sobre todo como resultado de la acción erosiva y disolvente del agua y de los compuestos disueltos en ella. En las regiones con formaciones calizas y lluvias abundantes, el agua superficial, que contiene dióxido de carbono y ácidos derivados de los componentes orgánicos del terreno, ataca la piedra caliza, disolviéndola y transportándola en disolución. Tras largos periodos, esta acción deriva en la formación de cámaras o cavidades subterráneas, conocidas como cuevas de disolución, que son una característica del relieve cárstico. La profundidad de estas cavidades depende del nivel freático (véase Acuífero). Si después de algunos años muy secos el nivel freático aumenta, las cámaras antiguas se inundan y empiezan a formarse cuevas a niveles más altos. Del mismo modo durante periodos secos prolongados, se forman cámaras a niveles bajos, más cerca del nivel freático descendente. A lo largo de miles de años, estas fluctuaciones producen sistemas de cuevas con alturas múltiples, como en el Parque Nacional Cueva del Mamut en Kentucky, donde un arroyo subterráneo fluye por el nivel inferior. Los ríos subterráneos producen erosión y transportan sedimentos y fragmentos de roca de forma similar a las corrientes de la superficie. Si este efecto es el predominante, se dice que la cueva se ha formado por abrasión mecánica. En España existen numerosos ejemplos de cuevas cársticas, como la Gruta de las Maravillas en la sierra de Aracena o las cuevas del Drac en la isla de Mallorca.

Las formas del relieve costeras

Otros tipos de cueva son: las cuevas marinas, formadas por la acción de las olas sobre los acantilados de la costa; los tubos lávicos o volcánicos, formados bajo corrientes de lava, y las cuevas de hielo que se forman en glaciares e icebergs. La acción de los ríos forma además otro tipo de cueva, en general con una abertura grande que le da el aspecto de un anfiteatro natural. Un río atrincherado en un cañón con paredes escarpadas erosiona el trozo de pared donde la corriente es más fuerte, como en un recodo o en un meandro. Por erosión, disolución y desgajamiento, el río extrae gran cantidad de roca, excavando la parte inferior de un lado del cañón. Con el paso del tiempo, el lecho del río baja y deja una cueva en el lateral del cañón. Estos refugios de piedra fueron utilizados por los hombres prehistóricos, conocidos como habitantes de las cavernas, que construían sus casas en ellos. Las cuevas formadas por las oquedades dejadas por los tubos lávicos, auténticas “tuberías” por donde fluyó la lava en otros tiempos, son muy peculiares. En las islas Canarias existen varios ejemplos y reciben el nombre local de “jameos”. Los Jameos del Agua y la Cueva de los Verdes, ambos en la isla de Lanzarote, son ejemplos excepcionales.
Por último, el efecto del viento es responsable en parte de la formación de pequeñas cuevas situadas, casi únicamente, en zonas desérticas o semidesérticas. La acción de la arena arrastrada por el viento es una de las fuerzas involucradas en la creación de grutas y cuevas en salientes y acantilados.
3
DETECCIÓN DE CUEVAS
La presencia de cuevas en zonas calizas puede detectarse gracias a pistas suministradas por la topografía del terreno. En estas regiones, los techos de grandes cavernas pueden derrumbarse y formar depresiones en la superficie. Pueden originar puentes naturales, otro fenómeno característico de las zonas con cuevas, después del hundimiento parcial del túnel por una corriente subterránea. También es común en estas zonas la desaparición de corrientes de agua, e incluso ríos enteros pueden desaparecer en sumideros, u ojos que pueden conducir a cavernas subterráneas o a acuíferos. Los sumideros indican la presencia de cuevas bajo ellos. Debido a la captura de las aguas superficiales por el sistema subterráneo de drenaje, algunas regiones con cuevas son bastante secas y polvorientas y tienen escasa vegetación. Se dice que estas regiones tienen una topografía cárstica, esta denominación deriva de una célebre región con cuevas situada a lo largo del mar Adriático en Eslovenia (véase Carst). Los sumideros con paredes empinadas llamados cenotes, situados en Yucatán (México), constituían la fuente principal de agua de los mayas. Estos depósitos naturales de agua, alimentados por corrientes subterráneas, tienen su origen en el derrumbamiento de la bóveda de una caverna cárstica, quedando al descubierto.
4
CARACTERÍSTICAS MÁS DESTACADAS
Sala de los Gigantes, Carlsbad
Ejemplo notable de cueva de disolución, la Sala de los Gigantes en Carlsbad (Nuevo México, EEUU) tiene tanto estalagmitas como estalactitas en su interior abovedado. El agua genera un sonido misterioso de goteo que suele asociarse a estas formaciones. Al fluir el agua, la roca disuelta se desprende muy despacio y forma estas estructuras parecidas a carámbanos. Las que se forman en el techo se llaman estalactitas y las del suelo estalagmitas.

El tamaño de las cuevas varía desde aberturas pequeñas en una ladera hasta enormes sistemas subterráneos con muchas cámaras y galerías interconectadas. Algunos sistemas de cuevas se extienden a lo largo de kilómetros bajo tierra y pueden tener muchas salidas.
En las grandes cavernas puede producirse un acondicionamiento natural del aire si la temperatura varía pocos grados durante el año y si hay una ventilación más o menos constante de aire fresco. Estas condiciones son el resultado de complejos fenómenos meteorológicos, sobre todo de variaciones de la presión atmosférica.
Las cuevas formadas por abrasión se componen normalmente de innumerables túneles sinuosos y de antiguas vías de agua subterráneas que muestran características similares a los lechos de las corrientes de la superficie, tales como depósitos de arena y grava. Estas cuevas carecen de las formaciones curiosas que pueden verse en las cuevas de disolución.
En las cuevas de disolución, la cal disuelta precipita con frecuencia de tal manera que forma depósitos de formas peculiares, como las estalactitas, que cuelgan como carámbanos de los techos de las cuevas, y las estalagmitas, que crecen hacia arriba sobre el suelo de las cavernas (véase Estalactitas y estalagmitas). Si ambas estructuras crecen hasta unirse, se forma una columna que ayuda a sostener el techo. Existen otras formas menos conocidas de depósitos de carbonato de calcio; pueden tener colores que varían desde el blanco alabastro hasta tonos rojos oscuros y castaños, dependiendo de las impurezas minerales disueltas aportadas por las aguas subterráneas, también pueden ser muy finos y translúcidos. Entre las estructuras raras está la helectita, una variedad de estalactita enroscada. Muchas formaciones de las cuevas son bastante delicadas y se rompen con facilidad; algunos de los mejores ejemplares han sido dañados o robados por exploradores sin escrúpulos o por visitantes.
Una práctica habitual en las grandes cuevas abiertas al público es iluminar las formaciones más espectaculares para el disfrute de los turistas. Muchas cavernas públicas tienen kilómetros de vías iluminadas, escaleras y vigilancia en las zonas peligrosas. En algunas cuevas, los visitantes pueden contratar excursiones de un día completo.
5
VIDA EN LAS CUEVAS
Arte rupestre aborigen, Australia
El arte rupestre aborigen tuvo un gran desarrollo antes de la llegada de los europeos. Alguna de las pinturas que se han encontrado en Australia Meridional fueron realizadas hacia el 18.000 a.C. Se cree que las figuras, como las que se aprecian en la imagen, representaban a los espíritus de los artistas.

En el transcurso de la evolución, algunas plantas y animales se han adaptado a la vida en cuevas. En general, estos organismos se han mantenido en una zona cercana a la entrada, aunque algunas especies han llegado hasta las secciones más oscuras de las cuevas. Así, estas formas de vida se pueden dividir entre las que viven exclusivamente en las cuevas y las que salen a buscar comida al exterior. El grillo de las cuevas y algunos peces de cueva son ejemplos de animales adaptados a vivir de manera permanente en el interior de las cavernas. Aunque muchas de estas especies sean ciegas, sus órganos táctiles están muy desarrollados. Estos animales suelen alimentarse de la materia comestible arrastrada hacia las cuevas por arroyos, tal como microorganismos y sustancias orgánicas en descomposición.
Un ejemplo de animales que descansan e hibernan en las cuevas pero que buscan comida en el exterior son los murciélagos. Depósitos abundantes de guano, o deposiciones de los murciélagos, se han acumulado durante siglos en las cuevas donde se congregan estos animales. En estos detritos se desarrollan una gran variedad de insectos y de organismos simples. El guano a veces se vende como fertilizante. El número de murciélagos que viven en una cueva grande puede ser muy elevado.
Debido a la falta de luz no hay crecimiento de plantas verdes, los hongos, por el contrario, sí pueden crecer en las cuevas. Suelen ser las aguas subterráneas con sustancias orgánicas disueltas las que les proporcionan nutrientes.
En tiempos remotos, eran muchos habitantes los que se resguardaban en cuevas, notablemente en el oeste de Europa, en las regiones mediterráneas, en China, en el sur de África y en Chile. Estos habitantes primitivos han sido llamados popularmente hombres de las cavernas, pero esta denominación es engañosa ya que implica que una raza humana ha vivido, alguna vez, constantemente dentro de cuevas. En realidad, durante la época glacial, humanos y otros animales buscaron refugio en las cuevas en algunas ocasiones. Se han encontrado muchos objetos del paleolítico y del neolítico en montones de desechos cerca de las entradas, y pinturas en algunas de las cuevas. Muchos críticos aclaman la belleza artística de estas pinturas que se atribuyen al hombre de Cro-magnon, una raza del periodo paleolítico tardío.
6
ESPELEOLOGÍA
Bisonte de Altamira
Declarada en 1985 Patrimonio cultural de la Humanidad por la UNESCO, la cueva de Altamira es tal vez la principal manifestación del arte rupestre paleolítico. Fue descubierta en 1876, aunque su principal hallazgo, los grandes paneles de pinturas, no salió a la luz hasta tres años después, y se encuentra enclavada en el término municipal de Santillana del Mar, en Cantabria, situado a unos pocos kilómetros de las principales ciudades de esa comunidad autónoma española, Torrelavega y Santander.

La ciencia que se encarga del estudio de las cuevas se llama espeleología. Es una rama de la geología y ha acrecentado el conocimiento de la mineralogía, la hidrodinámica, la arqueología, la biología y muchas otras disciplinas. Los espeleólogos se sirven de muchos artificios y métodos en sus exploraciones. Una técnica consiste en usar tintes para descubrir las salidas de una red compleja de corrientes subterráneas. El uso de un calzado especial, cascos de seguridad, escalas y cuerdas flexibles y lámparas fiables permite a los espeleólogos actuales explorar lugares recónditos de las cuevas con mucha más minuciosidad que antes. A veces los exploradores de cuevas permanecen bajo tierra durante días, trazando mapas y estudiando zonas extensas.
En España, país de relieve accidentado, hay diversas formaciones geológicas de esta índole que merece la pena reseñar, ya sea por sus dimensiones, su belleza natural o su importancia arqueológica. Las de mayor recorrido son el Complejo Palomera-Dolencias (Ojo Guareña, Burgos; sus 40.000 m hacen de ella la quinta del mundo), la de Mairuelegorreta (Gorbea, Álava; 10.000 m), la cueva del Tornero (Soria, 10.000 m), la cueva de los Chorros (Riopar, Albacete; 7.200 m) y la de Solencio de Bastaras (Huesca, 7.000 m). Por lo que se refiere al atractivo turístico, son muy visitadas las cuevas del Drac, de origen cárstico y situadas en la sierra de Levante mallorquina, y las de Nerja, en la provincia de Málaga.
En cuanto a las cuevas españolas cuyo interés radica en las manifestaciones artísticas prehistóricas, ostentan excelentes ejemplos de arte paleolítico las de Puente-Viesgo (Santander), las asturianas de Tito Bustillo y Peña Cándamo y, sobre todo, la cueva de Altamira, descubierta en el año 1879 en las cercanías de Santillana del Mar (Cantabria), la obra maestra del arte rupestre en el mundo: un célebre prehistoriador francés la llamó la Capilla Sixtina del arte cuaternario. Hay en ella unas 150 pinturas de animales, algunas incisas, con predominio de los bisontes. Destacan también las cuevas de Cogull en Lleida, el conjunto del Maestrazgo, y las de Alpera y Minateda en Albacete. En cuanto al arte del periodo neolítico, está representado por monumentos tales como las cuevas de Menga y del Romeral en Antequera (Málaga) o la cueva de Vélez Blanco en Almería.

viernes, 5 de noviembre de 2010

El asombroso Cuarzo



Cristal de roca
El cristal de roca es una variedad clara del cuarzo que forma cristales independientes.

Cuarzo, el mineral más común, compuesto por dióxido de silicio, o sílice, SiO2. Distribuido por todo el mundo como componente de rocas o en forma de depósitos puros, es un constituyente esencial de las rocas ígneas, como el granito, la riolita y la pegmatita, que contienen un exceso de sílice. En las rocas metamórficas, es un componente principal de distintos tipos de gneis y de esquisto; la roca metamórfica llamada cuarcita se compone casi en su totalidad de cuarzo. El cuarzo forma vetas y nódulos en rocas sedimentarias, sobre todo en caliza. La arenisca, roca sedimentaria, se compone sobre todo de cuarzo.
Muchas vetas de cuarzo depositadas en fisuras de rocas forman la matriz de muchos minerales valiosos. Los metales preciosos, como el oro, se encuentran en cantidad suficiente en las vetas de cuarzo como para justificar la extracción de este mineral. El cuarzo es también el constituyente principal de la arena.
2
PROPIEDADES
El cuarzo cristaliza en el sistema hexagonal. El tamaño de los cristales varía entre los especímenes que pesan una tonelada hasta las partículas diminutas que centellean sobre las superficies rocosas. El cuarzo también es común en formas masivas que contienen partículas con tamaños desde granulado grueso hasta criptocristalino (granos invisibles para el ojo, pero observables con un microscopio). Este mineral tiene una dureza de 7 y una densidad relativa de 2,65. Su brillo es vítreo en algunos especímenes y graso en otros. Algunos son transparentes y otros translúcidos. El mineral puro es incoloro, pero es frecuente que esté teñido por impurezas.
Los cristales de cuarzo exhiben una propiedad llamada efecto piezoeléctrico, producen una tensión eléctrica cuando están sometidos a presión a lo largo de ciertas direcciones cristalográficas. Por esta propiedad, los cristales de cuarzo son importantes en la industria electrónica para controlar la frecuencia de las ondas de radio. Tiene también la propiedad de girar el plano de la luz polarizada, y se usa por tanto en los microscopios de polarización.
Los cristales de cuarzo experimentan transformaciones estructurales cuando se calientan. El cuarzo ordinario o inferior, cuando se calienta hasta 573 °C, se convierte en cuarzo superior que tiene distinta estructura cristalina y propiedades. Sin embargo, cuando se enfría, el cuarzo superior vuelve a su estado inferior. Entre 870 y 1.470 °C, el cuarzo se encuentra en un estado llamado tridimita, y sobre 1.470 °C, su forma estable se conoce como cristobalita. Cerca de 1.710 °C, el mineral se funde.
3
VARIEDADES
Amatista
La amatista es una variedad de cuarzo muy conocida por su color, entre violeta y púrpura, y por la forma piramidal de sus cristales.

Las variedades cristalinas gruesas de cuarzo son, en general, transparentes y brillantes. El cristal de roca, forma incolora de cuarzo, suele encontrarse en cristales independientes. El cuarzo rosa es cristalino grueso, pero sin cristales independientes; su color se sitúa entre el rosa claro y el vivo y pierde intensidad por exposición a la luz. El cuarzo ahumado tiene cristales entre amarillo ahumado y castaño oscuro. La amatista, variedad semipreciosa de cuarzo, tiene color púrpura o violeta.
Muchos otros minerales forman inclusiones en variedades cristalinas de cuarzo. El cuarzo rutilado contiene pequeñas agujas de rutilo que penetran en cristales de cuarzo incoloro. La aventurina es una variedad que contiene escamas brillantes de hematites o de mica. También puede haber inclusiones líquidas o gaseosas. El cuarzo lechoso debe su color blanco lechoso a la presencia de numerosas inclusiones diminutas de líquido o de gas.
Las variedades criptocristalinas suelen clasificarse en dos clases generales, las fibrosas y las granuladas. Las variedades fibrosas, que incluyen el ágata, la cornalina, el heliotropo, el ónice y la crisoprasa, son tipos de calcedonia. Las variedades granuladas incluyen el sílex, el pedernal, el jaspe y el prasio.
4
USOS
Las distintas formas de calcedonia y muchas de las variedades cristalinas del cuarzo se usan como gemas y otros ornamentos. Las rocas de cristal puro se utilizan en equipos ópticos y electrónicos. Como arena, el cuarzo se utiliza con profusión en la fabricación de vidrio y de ladrillos de sílice, o como cemento y argamasa. El cuarzo molido sirve de abrasivo en el cortado de piedras, en los chorros de arena y en el molido de vidrio. El cuarzo en polvo se usa para hacer porcelana, papel de lija y relleno de madera. Se utilizan grandes cantidades de cuarzo como fundente en operaciones de fundición. Casi todo el cristal de cuarzo natural de alta calidad, importante materia bruta en la industria electrónica, se importa de Brasil, único país con grandes yacimientos de este mineral en cantidades comerciales. Los cristales de cuarzo también pueden sintetizarse.

Los asombrosos Cristales


Formación de un cristal
Si una disolución no es perturbada mientras se enfría, puede superar el punto normal de cristalización y permanecer en un estado superenfriado. Esto también es válido para una disolución que contenga el máximo de soluto; si asimila más, se denomina supersaturado. En ambos casos, si se añade un cristal pequeño, llamado semilla, se produce una reacción en cadena súbita (como se muestra en las fotos) y el crecimiento del cristal es muy rápido.

Cristal, porción homogénea de materia con una estructura atómica ordenada y definida y con forma externa limitada por superficies planas y uniformes simétricamente dispuestas. Los cristales se producen cuando un líquido forma lentamente un sólido; esta formación puede resultar de la congelación de un líquido, el depósito de materia disuelta o la condensación directa de un gas en un sólido. Los ángulos entre las caras correspondientes de dos cristales de la misma sustancia son siempre idénticos, con independencia del tamaño o de la diferencia de forma superficial.
La mayor parte de la materia sólida muestra una disposición ordenada de átomos y tiene estructura cristalina. Los sólidos sin estructura cristalina, como el vidrio, se denominan amorfos. Debido a su estructura, son más parecidos a un líquido que a un sólido. Se conocen como líquidos superenfriados.
2
CONDICIONES DE FORMACIÓN
En el interior del manto terrestre, a gran profundidad, las condiciones de presión y temperatura son tales que las rocas están fundidas formando un material fluido que denominamos magma. El magma puede enfriarse al acercarse a la superficie y solidificarse constituyendo rocas de tipo ígneo (véase Rocas ígneas). Si el enfriamiento es muy rápido, como sucede en el caso de la lava que sale al exterior en los procesos volcánicos, no da tiempo, en el proceso de solidificación, a que los átomos de los minerales se organicen formando cristales; pero si el enfriamiento es más lento y tiene lugar en el interior de la corteza, los átomos tienen tiempo para constituir estructuras ordenadas que es lo que denominamos cristales. Esto sucede, por ejemplo, en el caso del granito, formado por enfriamiento lento de ciertos tipos de magma que dan como resultado una roca en la que podemos ver los diferentes minerales componentes individualizados y cristalizados.
Los mismos líquidos, que se solidifican lentamente en las profundidades de la Tierra para formar granito, son expulsados a veces en forma de lava a la superficie donde se enfrían muy rápido formando una roca vítrea llamada obsidiana. Si el enfriamiento es algo más lento, se forma una roca llamada felsita; su estructura es cristalina, pero con cristales demasiado pequeños para ser vistos sin microscopio. Una estructura así se llama criptocristalina o afanítica. Un enfriamiento aún más lento produce una roca de estructura porfídica, en la que algunos cristales son suficientemente grandes para ser visibles; esta roca, que puede tener la misma composición que la obsidiana, la felsita o el granito, se llama riolita.
El granito, la riolita y la felsita no son homogéneos y por tanto no pueden ser un único cristal; son, sin embargo, rocas cristalinas. Cada uno de los constituyentes minerales de estas rocas está presente en forma de cristales que, aun siendo pequeños, son homogéneos. Las sustancias que se solidificaron primero durante el enfriamiento de la roca fundida muestran la disposición usual de las caras de sus cristales. Las que se solidificaron después, por tener una menor temperatura de congelación, se vieron obligadas a ocupar los intersticios libres y, por tanto, su aspecto externo está deformado.
La tendencia que provoca la formación de cristales homogéneos a partir de mezclas líquidas, se puede aprovechar para purificar muchas sustancias cristalinas. Los químicos usan este método con frecuencia. En particular, los compuestos orgánicos, se purifican casi siempre por recristalización.
En algunos grupos minerales, ciertos iones de un elemento pueden sustituirse por iones de otro, dejando la misma estructura cristalina pero formando algo que se puede considerar como una serie de disoluciones sólidas. Estos grupos, en los que hay un rango de composiciones químicas entre extremos puros de distinto material, se llaman isomorfos. Un ejemplo es la variedad de feldespato llamada plagioclasa, que contiene una serie completa, con composiciones que varían desde el aluminosilicato de sodio puro (albita) hasta el aluminosilicato de calcio puro (anortita). Otros grupos minerales que forman series isomorfas incluyen el apatito, la baritina, la calcita y la espinela.
El crecimiento cristalino se inicia cuando un cristal diminuto que se haya formado extrae de su entorno más material de su misma constitución. A veces, en ausencia de este primer cristal, o semilla, la cristalización no se produce, y la solución queda supersaturada, del mismo modo en que un líquido bajo su punto de solidificación está superenfriado. Cuando se produce una sustancia orgánica nueva, suele ser difícil formar el primer cristal salvo que se encuentre una sustancia isomórfica. La tendencia a la cristalización disminuye con la viscosidad creciente del líquido; si una disolución queda muy supersaturada o superenfriada se hace muy viscosa, y la cristalización deviene casi imposible. Un enfriado o una evaporación adicional del solvente produce primero un jarabe y luego un vidrio.
Algunas sustancias tienen una fuerte tendencia a formar semillas cristalinas. Si una disolución de estas sustancias es enfriada lentamente, unas pocas semillas crecen en grandes cristales; pero si se enfría rápidamente, se forman numerosas semillas y crecen sólo cristales pequeños. La sal de mesa, purificada industrialmente por recristalización, está compuesta por muchos cristales cúbicos perfectos apenas visibles; la sal de roca, formada por lentos procesos geológicos, contiene cristales enormes con la misma forma cristalina cúbica.
3
CRISTALOGRAFÍA
El estudio del crecimiento, la forma y la geometría de los cristales se llama cristalografía. Cuando las condiciones son favorables, cada elemento o compuesto químico tiende a cristalizarse en una forma definida y característica. Así, la sal tiende a formar cristales cúbicos; pero el granate, que ocasionalmente forma también cubos, se encuentra con más frecuencia en dodecaedros (sólidos con 12 caras) o triaquisoctaedros (sólidos con 24 caras). A pesar de sus hábitos diferentes (formas de cristalización), la sal y el granate cristalizan siempre en la misma clase y sistema. En teoría son posibles treinta y dos clases cristalinas; pero sólo una docena de clases incluye a casi todos los minerales comunes, y algunas clases nunca se han observado. Las treinta y dos clases se agrupan en seis sistemas cristalinos, caracterizados por la longitud y posición de sus ejes (líneas imaginarias que pasan por el centro del cristal e intersectan las caras definiendo relaciones de simetría en el cristal). Los minerales de cada sistema comparten algunas características de simetría y forma cristalina, así como muchas propiedades ópticas importantes.
Los seis sistemas cristalinos tienen mucha importancia para los mineralogistas y los gemólogos; la especificación del sistema es necesaria en la descripción de cualquier mineral (véase Mineralogía).
3.1
Cúbico
Cristal cúbico
Los cristales cúbicos, como el de la pirita aquí mostrado, tienen tres ejes perpendiculares con la misma longitud. La estructura cúbica, o isométrica, es la más simétrica entre todos los cristales. El sistema cristalino de la pirita forma rocas bastante duras, pero muy friables. La pirita se conoce también como "oro de los locos" debido a su color amarillo y a su lustre metálico.

Este sistema incluye los cristales con tres ejes perpendiculares unos con otros, y con la misma longitud.
3.2
Tetragonal
Cristal tetragonal
La idocrasa siberiana tiene estructura cristalina tetragonal. Sus ejes son perpendiculares y dos de ellos tienen la misma longitud. Se asocia con rocas como el zircón, el rutilo y la wulfenita, rocas de dureza media que pueden tener fuego adamantino.

Este sistema incluye los cristales con tres ejes perpendiculares unos con otros, dos de los cuales tiene el mismo tamaño.
3.3
Ortorrómbico
Cristal ortorrómbico
La baritina, de la que procede el bario, tiene una estructura de cristales ortorrómbicos. Tiene tres ejes perpendiculares dos a dos con longitudes distintas. Muestra exfoliación perfecta, esto es, se divide con facilidad a lo largo de planos secantes específicos.

Este sistema incluye los cristales con tres ejes perpendiculares unos con otros, todos de distinto tamaño.
3.4
Monoclínico

Cristal monoclínico
El yeso es un ejemplo de mineral con estructura cristalina monoclínica. Estos minerales tienen tres ejes desiguales, dos de los cuales son perpendiculares al tercero, pero no entre sí. El yeso, roca sedimentaria blanda, se usa como escayola de París así como en agricultura y construcción.

Este sistema incluye los cristales con tres ejes de distinta longitud, dos de los cuales son oblicuos (es decir, no perpendiculares) entre sí, pero perpendiculares al tercero.
3.5
Triclínico
Cristal triclínico
Los cristales triclínicos muestran la menor simetría entre todos los sistemas cristalinos. Sus ejes son desiguales y nunca forman ángulos rectos. Esta axinita brasileña es un ejemplo de cristal triclínico.

Este sistema incluye los cristales con tres ejes de distinto tamaño y oblicuos los unos con los otros.
3.6
Hexagonal
Cristal hexagonal
Un cristal hexagonal, como el berilo, tiene cuatro ejes de simetría. Tres de ellos tienen la misma longitud y están dispuestos de forma simétrica en un plano. El cuarto eje es perpendicular a los demás.

Este sistema incluye los cristales con cuatro ejes. Tres de estos ejes se encuentran en un mismo plano, distribuidos simétricamente y con el mismo tamaño. El cuarto eje es perpendicular a los otros tres. Algunos cristalógrafos dividen el sistema hexagonal en dos, creando un séptimo sistema llamado trigonal o romboedral.

Cristales de apatito
El apatito incluye varios minerales de fosfato de calcio, entre ellos el fluoruro fosfato de calcio, materia que compone los dientes y los huesos. Estos cristales amarillos de apatito pertenecen al sistema hexagonal, tienen por tanto un eje de simetría en la dirección larga y otros tres ejes simétricos sobre un plano perpendicular al primer eje. Una sección de un cristal de apatito mostraría un hexágono.

Algunos elementos o compuestos pueden cristalizar en dos sistemas diferentes, originando sustancias que, aunque idénticas en composición química, son diferentes en casi todas las demás propiedades físicas. Por ejemplo, el carbono cristaliza en el sistema cúbico formando diamante y en el sistema hexagonal formando grafito. Aunque el diamante pertenece al mismo sistema que la sal y el granate, está en una clase distinta: cristaliza en tetraedros (sólidos con cuatro caras) o en octaedros (sólidos con ocho caras); esto último es posible en la clase del granate y la sal, pero no lo primero.
4
OTRAS PROPIEDADES CRISTALINAS
El hábito de cualquier mineral incluye muchas otras propiedades basadas en la estructura cristalina. Por ejemplo, la argentita, una mena común de plata, cristaliza en la misma clase que el granate y la sal, pero suele encontrarse en masas criptocristalinas irregulares. La fluorita, otro mineral común, también cristaliza en la misma clase y forma normalmente cubos; cuando se fractura, tiende a dividirse en fragmentos octaédricos perfectos. La sal se rompe en fragmentos cúbicos, y el granate no tiene planos de exfoliación bien definidos. Algunas sustancias tienden a formar múltiples cristales que crecen los unos sobre los otros.
Algunos cristales, cuando se comprimen, producen cargas eléctricas en sus extremos; otros producen cargas similares cuando se calientan. Estas propiedades, llamadas piezoelectricidad y piroelectricidad respectivamente, son mostradas de modo notable por el cuarzo. Por esta razón, los cristales de cuarzo se usan en sonares y en muchos tipos de aparatos de radio. En un transistor, se utilizan propiedades especiales de los cristales de germanio y silicio para amplificar una corriente eléctrica. Otro dispositivo electrónico, la célula solar, utiliza un cristal de sulfuro de silicio o cadmio para convertir la luz del Sol en energía eléctrica (véase Batería).
Se ha trabajado mucho en los últimos años en la producción de monocristales de sustancias que son normalmente criptocristalinas. Por ejemplo, se pueden hacer crecer grandes monocristales de metales con diversos métodos. El más sencillo, consiste en fundir el metal en una vasija cónica, con el vértice hacia abajo, y hacerla descender lentamente desde el horno. Si se dan las condiciones adecuadas, se forma una única semilla en la punta del cono y crece hasta llenar la vasija. Estos monocristales suelen diferir notablemente de los metales en su forma usual. Los cristales puros, especialmente diseñados, se producen en la actualidad con técnicas avanzadas, como la epitaxia de haz molecular, para su uso en semiconductores, circuitos integrados y otros sistemas importantes de tecnología moderna.
Cuando los rayos X atraviesan los átomos de un cristal dispuestos de forma simétrica, éstos se comportan como una red de difracción, desviando los rayos en figuras regulares. Fotografías de estas figuras dan a los científicos una base para deducir muchos datos relativos a la naturaleza del cristal. La disposición real de los átomos en los cristales puede observarse en imágenes producidas por microscopios electrónicos de transmisión (véase Microscopio) y dispositivos de emisión de campo iónico.

Un regla básica de la cristalografía ha sido durante mucho tiempo que ninguna estructura cristalina podía tener simetría pentagonal o de orden cinco. Se pensaba que dicha simetría no podía mostrar la periodicidad traslacional requerida en los cristales. Sin embargo, en 1984, un grupo de científicos descubrió una aleación de aluminio y magnesio que parecía violar la regla. Su figura de difracción indicaba que tenía la simetría de un icosaedro (sólido con 20 caras) con 10 ejes con simetría rotacional de tercer orden y 6 con simetría rotacional de quinto orden. Este descubrimiento abre la posibilidad de que exista toda una nueva fase de materia sólida organizada, distinta de los cristales y los vidrios.

Entradas populares